The genetic architecture of Drosophila sensory bristle number.
نویسندگان
چکیده
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits.
منابع مشابه
hairy: A quantitative trait locus for drosophila sensory bristle number.
Advances in medicine, agriculture, and an understanding of evolution depend on resolving the genetic architecture of quantitative traits, which is challenging since variation for complex traits is caused by multiple interacting quantitative trait loci (QTL) with small and conditional effects. Here, we show that the key developmental gene, hairy (h), is a QTL for Drosophila sternopleural bristle...
متن کاملVariation and evolution of male sex combs in Drosophila: nature of selection response and theories of genetic variation for sexual traits.
We investigated the genetic architecture of variation in male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila. Twenty-four generations of divergent artificial selection for sex comb bristle number in a heterogeneous population of Drosophila melanogaster resulted in a significant response that was more pronounced in the direction of low bristle numbers. We ob...
متن کاملLoss of notum macrochaetae as an interspecific hybrid anomaly between Drosophila melanogaster and D. simulans.
With the aim of revealing genetic variation accumulated among closely related species during the course of evolution, this study focuses on loss of macrochaetae on the notum as one of the developmental anomalies seen in interspecific hybrids between Drosophila melanogaster and its closely related species. Interspecific hybrids between a line of D. melanogaster and D. simulans isofemale lines ex...
متن کاملGenotype-environment interaction at quantitative trait loci affecting sensory bristle number in Drosophila melanogaster.
The magnitude of segregating variation for bristle number in Drosophila melanogaster exceeds that predicted from models of mutation-selection balance. To evaluate the hypothesis that genotype-environment interaction (GEI) maintains variation for bristle number in nature, we quantified the extent of GEI for abdominal and sternopleural bristles among 98 recombinant inbred lines, derived from two ...
متن کاملA genetic screen for novel components of the notch signaling pathway during Drosophila bristle development.
The Notch receptor is the central element in a cell signaling mechanism controlling a broad spectrum of cell fate choices. Genetic modifier screens in Drosophila and subsequent molecular studies have identified several Notch pathway components, but the biochemical nature of signaling is still elusive. Here, we report the results of a genetic modifier screen of the bristle phenotype of a gain-of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 162 4 شماره
صفحات -
تاریخ انتشار 2002